基于opencv和Python37完成的人脸识别|Pyth

本文正在参加「Python主题月」,详情查看 活动链接

目录完成后的文件目录

一、需要准备的材料

1.笔记本电脑(带有摄像头的电脑)

2.python3.7,pycharm

第三方包的安装准备

二,本文采用pip进行安装

在开始菜单栏搜索dos,然后回车启动命令提示符。

在python3.7的Scripts文件夹中可以找到pip.exe。

在命令提示符中输入Scripts文件夹的绝对路径

例:cd C:\python3.7\Scripts

注:cd为Change directory,即更换目录,cd后有空格。

更换目录成功后,输入pip.exe,启动pip

三,启动pip后,就可以开始安装Python的第三方包了,注意要让电脑联网。

第三方包的安装

(1)opencv 的安装,输入:pip install opencv-python。

注:numpy与OpenCV绑定安装,无需自己输入命令。

(2) pillow的安装,输入: pip install pillow

注:pillow为图像处理包。

(3) contrib的安装,输入:pip install opencv-contrib-python

四、人脸识别的程序实现

1.FaceDetection,人脸检测

废话不多说,先上代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
ini复制代码import numpy as np
import cv2

# 人脸识别分类器
faceCascade = cv2.CascadeClassifier(r'C:\python3.7\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml')

# 识别眼睛的分类器
eyeCascade = cv2.CascadeClassifier(r'C:\python3.7\Lib\site-packages\cv2\data\haarcascade_eye.xml')

# 开启摄像头
cap = cv2.VideoCapture(0)
ok = True

while ok:
# 读取摄像头中的图像,ok为是否读取成功的判断参数
ok, img = cap.read()
# 转换成灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 人脸检测
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(32, 32)
)

# 在检测人脸的基础上检测眼睛
for (x, y, w, h) in faces:
fac_gray = gray[y: (y+h), x: (x+w)]
result = []
eyes = eyeCascade.detectMultiScale(fac_gray, 1.3, 2)

# 眼睛坐标的换算,将相对位置换成绝对位置
for (ex, ey, ew, eh) in eyes:
result.append((x+ex, y+ey, ew, eh))

# 画矩形
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

for (ex, ey, ew, eh) in result:
cv2.rectangle(img, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)

cv2.imshow('video', img)

k = cv2.waitKey(1)
if k == 27: # press 'ESC' to quit
break

cap.release()
cv2.destroyAllWindows()

注:1.人脸识别分类器的路径在不同的电脑上不同,一般来讲,在python3.7\Lib\site-packages\cv2\data中,注意是绝对路径,如果嫌目录太长,可以将分类器和程序放在一起。

注:2.经过我的慎重考虑,我决定不放出我的人脸,请各位读者自行尝试,大概就是一个蓝色的矩形框住你的脸,两个绿色的矩形框住你的眼睛,按esc可退出。

2.FaceDataCollect,人脸数据收集

还是先上代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ini复制代码import cv2
import os
# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2

cap = cv2.VideoCapture(0)

face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

face_id = input('\n enter user id:')

print('\n Initializing face capture. Look at the camera and wait ...')

count = 0

while True:

# 从摄像头读取图片

sucess, img = cap.read()

# 转为灰度图片

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 检测人脸

faces = face_detector.detectMultiScale(gray, 1.3, 5)

for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
count += 1

# 保存图像
cv2.imwrite("Facedata/User." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])

cv2.imshow('image', img)

# 保持画面的持续。

k = cv2.waitKey(1)

if k == 27: # 通过esc键退出摄像
break

elif count >= 1000: # 得到1000个样本后退出摄像
break

# 关闭摄像头
cap.release()
cv2.destroyAllWindows()

注:1.在运行该程序前,请先创建一个Facedata文件夹并和你的程序放在一个文件夹下。

友情提示:请将程序和文件打包放在一个叫人脸识别的文件夹下。可以把分类器也放入其中。

注:2.程序运行过程中,会提示你输入id,请从0开始输入,即第一个人的脸的数据id为0,第二个人的脸的数据id为1,运行一次可收集一张人脸的数据。

注:3.程序运行时间可能会比较长,可能会有几分钟,如果嫌长,可以将 #得到1000个样本后退出摄像 这个注释前的1000,改为100。

如果实在等不及,可按esc退出,但可能会导致数据不够模型精度下降。

3.face_training,人脸数据训练

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
python复制代码import numpy as np
from PIL import Image
import os
import cv2
# 人脸数据路径
path = 'Facedata'

recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

def getImagesAndLabels(path):
imagePaths = [os.path.join(path, f) for f in os.listdir(path)] # join函数的作用?
faceSamples = []
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_numpy = np.array(PIL_img, 'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)
for (x, y, w, h) in faces:
faceSamples.append(img_numpy[y:y + h, x: x + w])
ids.append(id)
return faceSamples, ids


print('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))

recognizer.write(r'face_trainer\trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))

注:1.第8行的LBPHFaceRecognizer_create()为contrib中的函数,笔者之前自己摸索时,没有安装此包,因此卡了很久,印象深刻。

注:2.运行该程序前,请在人脸识别文件夹下创建face_trainer文件夹。

4.face_recognition 人脸检测

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
ini复制代码import cv2

recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('face_trainer/trainer.yml')
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX

idnum = 0

names = ['Allen', 'Bob']

cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)

while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
)

for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w])

if confidence < 100:
idnum = names[idnum]
confidence = "{0}%".format(round(100 - confidence))
else:
idnum = "unknown"
confidence = "{0}%".format(round(100 - confidence))

cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)
cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (0, 0, 0), 1)

cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break

cam.release()
cv2.destroyAllWindows()

注:1. 11行的names中存储人的名字,若该人id为0则他的名字在第一位,id位1则排在第二位,以此类推。

注:2. 最终效果为一个绿框,框住人脸,左上角为红色的人名,左下角为黑色的概率。

五,结语

在这里我要感谢个人博客

www.cnblogs.com/xp12345的技术支…
照着他的步骤成功的完成了人脸识别,改动地方不多,希望能对你们有帮助!

本文转载自: 掘金

开发者博客 – 和开发相关的 这里全都有

0%