小知识,大挑战!本文正在参与“程序员必备小知识”创作活动。
本文已参与「掘力星计划」,赢取创作大礼包,挑战创作激励金。
使用对数刻度
当可视化的数据变化范围非常广时,如果仍然使用常规的坐标轴刻度,将导致数据密集显示,甚至无法看到数据的变化趋势,这时,使用对数刻度就可以对图形进行更好的展示。
1 | python复制代码import numpy as np |
若使用常规坐标轴刻度,则图形将变得混乱:
Tips:通过向plt.yscale()函数传递'log'参数值来得到对数刻度,;其他可用缩放类型参数值还包括'linear'、'symlog'等。同样,我们也可以使用plt.xscale()在x轴上获得相同的结果默认情况下,对数基数为10,但可以使用可选参数basex和basey进行更改。设置对数刻度适用于任何图形,而不仅仅是曲线图。
同样,使用对数标度也可以用于放大范围非常大的数据上的一个小范围:
1 | python复制代码import numpy as np |
Tips:将"symlog"作为plt.xscale()的参数值,可以设置以0为中心的对称对数刻度,如通过设置"linthreshx=6",指定了对数刻度的范围为[-6, 6],此时,在[-6, 6]范围内使用对数刻度,而超出该范围则使用线性刻度。这样,我们既可以详细地查看某个范围内的数据,同时仍然可以查看大量范围外数据的大致特征。
使用极坐标
有些图形的绘制和角度有着密不可分的关系。例如,扬声器的功率取决于测量的角度。此时,极坐标就是表示此类数据关系的最佳选择。
1 | python复制代码import numpy as np |
Tips:plt.axes()可以显式的创建一个Axes实例,从而进行一些自定义的设置。只需使用可选的polar参数即可设置使用极坐标。
虽然绘制曲线可能是极坐标最常见的用法。但是,我们也可以使用极坐标绘制其他任何类型的图形,如条形图和形状。例如,使用极坐标和多边形,可以绘制雷达图:
1 | python复制代码import numpy as np |
Tips:这里所用的多边形坐标是多边形顶点与原点间的角度和距离,不需要执行从极坐标到笛卡尔坐标的显式转换。
系列链接
本文转载自: 掘金