Python开发基础总结(五)模块+日志+自省 一、模块的使

「这是我参与11月更文挑战的第14天,活动详情查看:2021最后一次更文挑战

一、模块的使用

1、 如果不想将模块的某些函数和变量被别的模块使用,可以以单下划线开头。这样import 是没有的,但是使用import mode,然后mode.fun仍然可以调用。在class中是以双下划线开头的。
2、 使用from。。。import导入的符号,应该是本地符号,更改的话,无法更改模块中的值。可以通过mode.name=来修改。

3、 init.py的作用:可以这样理解:包也是一个对象,这个py就是这个包的构造函数。导入这个包,就会自动的执行__init_.py。如果在这个py中导入其他符号,import 这个包并且加也会导入这个符号。

4、 import 无法导入模块中以_开头的符号。但是,不用是可以的。

5、 import的本质也是创建一个符号,指向一个对象的引用。这个符号和被import的模块的符号是没有关系的。和c的extern不一样。extern可以更改变量的值,但是,这在Python中是不可以的。

1
2
3
4
5
6
7
python复制代码from srctest import itest, outitest, setitest
import srctest
# itest = 9#这个地方其实改变的是本模块中符号的引用,无法更改srctest中对应符号。
#srctest.itest = 9#这个可以更改srctest中的itest
setitest(9)#这个可以更改srctest中的itest,但是改变不了当前模块的itest,也就是,这种设置是无法同步的。
print(itest)#打印当前模块的itest
    printitest()#打印srctest中的itest

Python的设计哲学:看似不方便的背后,其实有Python的设计哲学。便捷性很多时候都是模块性的大敌。在软件开发中,模块间的最短路径未必是最合理路径,而且往往是最不合理路径。它会破坏软件原有的交互原则。

Python这样设计的理由应该是,尽量将数据和对数据的操作放在一起。如果数据会扩散,那么,就将数据设计为只读的。这样有助于提高程序模块的内聚性(全局变量是内聚性的大敌),降低耦合性。降低程序的复杂性(数据只读,调试根据方便)。

srctest.itest是可以改变itest的值的,说明我们可以通过改变这个对象的属性来改变对象(模块也是对象)。

可能有一点小题大做。

6、 两个模块不可以双向import。那万一两个模块都要互相调用对方怎么办?Python的设计哲学告诉你,这不是一个好的实践,所以这样不行。应该怎么弄?一个模块调用另外一个模块,如果被调用模块想调用调用模块的方法,通过回调的形式。这样可以保证,模块间的连接都是单向的。

二、日志的使用

1、 日志的标准模块logging基本可以满足我的工作。

2、 设置log的初始化工作:

1
2
3
4
5
ini复制代码logging.basicConfig(
    filename = "test.log",
    format = "[%(asctime)s-%(levelname)s] %(message)s [%(filename)s,%(lineno)d]",
    level = logging.INFO,
    datefmt = "%F %T")

3、 除此之外,一个比较强大的功能就是过滤功能:可以针对级别,文件,行号等等很多的东西进行过滤。

三、自省的使用

1、 type()可以查看对象的类型。这就是自省。也就是可以看看自己是什么类型。这个功能在动态语言中非常有用。

2、 getattr函数:这是个非常有用的函数,它可以根据字符串,从模块,类,对象实例中获取属性和方法的应用并且调用。这个功能非常类似于c语言的函数指针,以及c++中的成员函数的指针。

1)从模块中获取函数和成员

1
2
3
ini复制代码import testfun
tf = getattr(testfun, 'test')
tstr = getattr(testfun, 'str')

2)从类中获取属性和方法

class test():

1
2
3
4
5
6
7
8
9
10
11
12
13
python复制代码tst = 2
        def __init__(self):
        self.abc = 1
      def method(self):
        print('in test.method', self)
      def __test(self):
        print('in test')
tm = getattr(test, 'method’)#获取类方法method函数指针。因为没有实例,所以调用必须用下面的方法:
t = test()
tm(t)#申请一个实例,并且作为第一个参数传进去。
tm = getattr(test, '__test’)#这里会报错,也就是无法获取私有方法。
tabc = getattr(test, 'abc’)#这是错误的。无法获取。
ttst = getattr(test, 'tst’)#这是可以的。。

3)从对象实例中获取属性和方法

1
2
3
4
scss复制代码t = test()
tm = getattr(t, 'method')
 tm()#可以这样调用,而不用传入t实例。
tabc = getattr(test, 'abc’)#可以获取实例的属性。

3、 callable:函数表示某个对象是否可以调用。它和getattr结合起来,可以获取一个对象中的所有的method列表:

1
python复制代码methods = [method for method in dir[object] if callable(getattr(object, method))]

4、 自省也叫放射。

5、 exec(‘print “test”‘):可以执行字符串代码。这个特性有助于动态执行代码,可以用于机器学习,自动生成代码。

exec的参数可以使一个打开的文件对象,string,code object。

code object可以通过函数

类似的方法:execfile(filename[, globals[, locals]])。

6、 可以更改类的方法,将它指向一个新的方法。如下:

1
2
3
4
5
6
7
8
scss复制代码class ctest():
def test(self):
print('c test test')
def testfun():
print('test fun !')
c = ctest()
c.test = testfun
c.test()

对象c的方法test被替换为新的方法:testfun。这个特性有助于根据动态的代码实现,但是往往会增加代码的透明性。

类似的,setattr也可以实现这样的功能。delattr可以删除属性。

1
2
python复制代码setattr(c, 'test', testfun)
delattr(c, 'test')

c.test()#这里调用的其实就是ctest的test方法。也就是说,delattr会首先删除setattr设置的属性,如果在调用一次delattr,才会删除c的test方法。但是如果多调用几次setattr,也只要调用一次delattr即可删除。所以,要删除一个方法,最多调用两次delattr。

这个特性可以用于动态更改代码。也可用于补丁。

setattr无法对Python的c扩展模块进行操作。

7、 如何判断一个变量是否存在:

1
2
scss复制代码‘v’ in dir()
‘v’ in locals.key()

\

本文转载自: 掘金

开发者博客 – 和开发相关的 这里全都有

0%