数据仓库系列文章
- 数仓架构发展史
- 数仓建模方法论
- 数仓建模分层理论
- 数仓建模—宽表的设计
- 数仓建模—指标体系
- 一文搞懂ETL和ELT的区别
- 数据湖知识点
- 技术选型 | OLAP大数据技术哪家强?
- 数仓相关面试题
- 从 0 到 1 学习 Presto,这一篇就够了!
- 元数据管理在数据仓库的实践应用
- 做中台2年多了,中台到底是什么呢?万字长文来聊一聊中台
- 数据仓库之拉链表
- sqoop用法之mysql与hive数据导入导出
Spark SQL概述
1、什么是Spark SQL
Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块。
与基本的Spark RDD API不同,Spark SQL的抽象数据类型为Spark提供了关于数据结构和正在执行的计算的更多信息。
在内部,Spark SQL使用这些额外的信息去做一些额外的优化,有多种方式与Spark SQL进行交互,比如: SQL和DatasetAPI。
当计算结果的时候,使用的是相同的执行引擎,不依赖你正在使用哪种API或者语言。这种统一也就意味着开发者可以很容易在不同的API之间进行切换,这些API提供了最自然的方式来表达给定的转换。
Hive是将Hive SQL转换成 MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!
Spark SQL它提供了2个编程抽象,类似Spark Core中的RDD
(1)DataFrame
(2)Dataset
2、Spark SQL的特点
1)易整合
无缝的整合了SQL查询和Spark编程
2)统一的数据访问方式
使用相同的方式连接不同的数据源
3)兼容Hive
在已有的仓库上直接运行SQL或者HiveQL
4)标准的数据连接
通过JDBC或者ODBC来连接
3、什么的DataFrame
在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。
同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。
上图直观地体现了DataFrame和RDD的区别。
左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待,DataFrame也是懒执行的,但性能上比RDD要高,主要原因:优化的执行计划,即查询计划通过Spark catalyst optimiser进行优化。比如下面一个例子:
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。
如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
4、什么是DataSet
DataSet是分布式数据集合。DataSet是Spark 1.6中添加的一个新抽象,是DataFrame的一个扩展。它提供了RDD的优势(强类型,使用强大的lambda函数的能力)以及Spark SQL优化执行引擎的优点。DataSet也可以使用功能性的转换(操作map,flatMap,filter等等)。
1)是DataFrame API的一个扩展,是SparkSQL最新的数据抽象;
2)用户友好的API风格,既具有类型安全检查也具有DataFrame的查询优化特性;
3)用样例类来定义DataSet中数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称;
4)DataSet是强类型的。比如可以有DataSet[Car],DataSet[Person]。
5)DataFrame是DataSet的特列,DataFrame=DataSet[Row] ,所以可以通过as方法将DataFrame转换为DataSet。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息都用Row来表示。
Spark SQL编程
1、Spark Session新的起始点
在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContex和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。当我们使用 spark-shell 的时候, spark 会自动的创建一个叫做spark的SparkSession, 就像我们以前可以自动获取到一个sc来表示SparkContext
2、DataFrame
Spark SQL的DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成SQL表达式。DataFrame API 既有transformation操作也有action操作,DataFrame的转换从本质上来说更具有关系, 而 DataSet API 提供了更加函数式的 API。
2.1 创建DataFrame
在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换;还可以从Hive Table进行查询返回。
2.2 SQL风格语法
SQL语法风格是指我们查询数据的时候使用SQL语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
1)创建一个DataFrame
1 | scala复制代码scala> val df = spark.read.json("/opt/module/spark-local/people.json") |
2)对DataFrame创建一个临时表
1 | scala复制代码scala> df.createOrReplaceTempView("people") |
3)通过SQL语句实现查询全表
1 | scala复制代码scala> val sqlDF = spark.sql("SELECT * FROM people") |
4)结果展示
1 | scala复制代码scala> sqlDF.show |
注意:普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people
5)对于DataFrame创建一个全局表
1 | scala复制代码scala> df.createGlobalTempView("people") |
6)通过SQL语句实现查询全表
1 | scala复制代码scala> spark.sql("SELECT * FROM global_temp.people").show() |
2.3 DSL风格语法
DataFrame提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据,可以在Scala, Java, Python和R中使用DSL,使用DSL语法风格不必去创建临时视图了。
1)创建一个DataFrame
1 | scala复制代码scala> val df = spark.read.json("/opt/module/spark-local /people.json") |
2)查看DataFrame的Schema信息
1 | scala复制代码scala> df.printSchema |
3)只查看”name”列数据
1 | scala复制代码scala> df.select("name").show() |
4)查看所有列
1 | scala复制代码scala> df.select("*").show |
5)查看”name”列数据以及”age+1”数据
注意:涉及到运算的时候, 每列都必须使用$
1 | scala复制代码scala> df.select($"name",$"age" + 1).show |
6)查看”age”大于”19”的数据
1 | scala复制代码scala> df.filter($"age">19).show |
7)按照”age”分组,查看数据条数
1 | scala复制代码scala> df.groupBy("age").count.show |
2.4 RDD转换为DataFrame
在 IDEA 中开发程序时,如果需要RDD 与DF 或者DS 之间互相操作,那么需要引入import spark.implicits._。
这里的spark不是Scala中的包名,而是创建的sparkSession 对象的变量名称,所以必须先创建 SparkSession 对象再导入。这里的 spark 对象不能使用var 声明,因为 Scala 只支持val 修饰的对象的引入。
spark-shell 中无需导入,自动完成此操作。
1 | scala复制代码scala> val idRDD = sc.textFile("data/id.txt") scala> idRDD.toDF("id").show |
实际开发中,一般通过样例类将RDD转换为DataFrame。
1 | scala复制代码scala> case class User(name:String, age:Int) defined class User |
2.5 DataFrame转换为RDD
DataFrame其实就是对RDD的封装,所以可以直接获取内部的RDD
1 | scala复制代码scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, t._2)).toDF |
注意:此时得到的RDD存储类型为Row
1 | scala复制代码scala> array(0) |
3、DataSet
DataSet是具有强类型的数据集合,需要提供对应的类型信息。
3.1 创建DataSet
1)使用样例类序列创建DataSet
1 | scala复制代码scala> case class Person(name: String, age: Long) |
2)使用基本类型的序列创建DataSet
1 | scala复制代码scala> val ds = Seq(1,2,3,4,5,6).toDS |
注意:在实际使用的时候,很少用到把序列转换成DataSet,更多是通过RDD来得到DataSet。
3.2 RDD转换为DataSet
SparkSQL能够自动将包含有样例类的RDD转换成DataSet,样例类定义了table的结构,样例类属性通过反射变成了表的列名。样例类可以包含诸如Seq或者Array等复杂的结构。
1)创建一个RDD
1 | scala复制代码scala> val peopleRDD = sc.textFile("/opt/module/spark-local/people.txt") |
2)创建一个样例类
1 | scala复制代码scala> case class Person(name:String,age:Int) |
3.3DataSet转换为RDD
调用rdd方法即可。
1)创建一个DataSet
1 | scala复制代码scala> val DS = Seq(Person("zhangcuishan", 32)).toDS() |
2)将DataSet转换为RDD
1 | scala复制代码scala> DS.rdd |
4、DataFrame与DataSet的互操作
4.1 DataFrame转为DataSet
1)创建一个DateFrame
1 | scala复制代码scala> val df = spark.read.json("/opt/module/spark-local/people.json") |
2)创建一个样例类
1 | scala复制代码scala> case class Person(name: String,age: Long) |
3)将DataFrame转化为DataSet
1 | scala复制代码scala> df.as[Person] |
这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便。在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。
4.2Dataset转为DataFrame
1)创建一个样例类
1 | scala复制代码scala> case class Person(name: String,age: Long) |
2)创建DataSet
1 | scala复制代码scala> val ds = Seq(Person("zhangwuji",32)).toDS() |
3)将DataSet转化为DataFrame
1 | scala复制代码scala> var df = ds.toDF |
4)展示
1 | scala复制代码scala> df.show |
5、IDEA实践
1)Maven工程添加依赖
1 | xml复制代码<dependency> |
2)代码实现
1 | scala复制代码object SparkSQL01_Demo { |
Spark SQL数据的加载与保存
1、通用的加载与保存方式
1)spark.read.load是加载数据的通用方法
2)df.write.save 是保存数据的通用方法
1.1 数据加载
1)read直接加载数据
1 | scala复制代码scala> spark.read. |
注意:加载数据的相关参数需写到上述方法中,如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接加载Json数据
1 | scala复制代码scala> spark.read.json("/opt/module/spark-local/people.json").show |
2)format指定加载数据类型
1 | scala复制代码scala> spark.read.format("…")[.option("…")].load("…") |
用法详解:
(1)format(“…”):指定加载的数据类型,包括”csv”、”jdbc”、”json”、”orc”、”parquet”和”textFile”
(2)load(“…”):在”csv”、”jdbc”、”json”、”orc”、”parquet”和”textFile”格式下需要传入加载数据的路径
(3)option(“…”):在”jdbc”格式下需要传入JDBC相应参数,url、user、password和dbtable
例如:使用format指定加载Json类型数据
1 | scala复制代码scala> spark.read.format("json").load ("/opt/module/spark-local/people.json").show |
3)在文件上直接运行SQL
前面的是使用read API先把文件加载到DataFrame然后再查询,也可以直接在文件上进行查询。
1 | scala复制代码scala> spark.sql("select * from json.`/opt/module/spark-local/people.json`").show |
说明:json表示文件的格式. 后面的文件具体路径需要用反引号括起来。
1.2 保存数据
1)write直接保存数据
1 | scala复制代码scala> df.write. |
注意:保存数据的相关参数需写到上述方法中。如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接将df中数据保存到指定目录
1 | scala复制代码//默认保存格式为parquet |
2)format指定保存数据类型
1 | scala复制代码scala> df.write.format("…")[.option("…")].save("…") |
用法详解:
(1)format(“…”):指定保存的数据类型,包括”csv”、”jdbc”、”json”、”orc”、”parquet”和”textFile”。
(2)save (“…”):在”csv”、”orc”、”parquet”和”textFile”格式下需要传入保存数据的路径。
(3)option(“…”):在”jdbc”格式下需要传入JDBC相应参数,url、user、password和dbtable
3)文件保存选项
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用mode()方法来设置。有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。
SaveMode是一个枚举类,其中的常量包括:
例如:使用指定format指定保存类型进行保存
1 | scala复制代码df.write.mode("append").json("/opt/module/spark-local/output") |
1.3 默认数据源
Spark SQL的默认数据源为Parquet格式。数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。
1)加载数据
1 | scala复制代码val df = spark.read.load("/opt/module/spark-local/examples/src/main/resources/users.parquet").show |
2)保存数据
1 | scala复制代码scala> var df = spark.read.json("/opt/module/spark-local/people.json") |
2、JSON文件
Spark SQL能够自动推测JSON数据集的结构,并将它加载为一个Dataset[Row]。可以通过SparkSession.read.json()去加载一个一个JSON文件。
注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。格式如下:
1 | json复制代码{"name":"Michael"} |
1)导入隐式转换
1 | json复制代码import spark.implicits._ |
2)加载JSON文件
1 | json复制代码val path = "/opt/module/spark-local/people.json" |
3)创建临时表
1 | json复制代码peopleDF.createOrReplaceTempView("people") |
4)数据查询
1 | json复制代码val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19") |
3、MySQL
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
**如果使用spark-shell操作,可在启动shell时指定相关的数据库驱动路径或者将相关的数据库驱动放到spark的类路径下。 **
1 | json复制代码bin/spark-shell |
这里演示在Idea中通过JDBC对Mysql进行操作
3.1 导入依赖
1 | xml复制代码<dependency> |
3.2 从JDBC读数据
1 | scala复制代码object SparkSQL02_Datasource { |
3.3 向JDBC写数据
1 | scala复制代码object SparkSQL03_Datasource { |
4、Hive
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL编译时可以包含 Hive 支持,也可以不包含。
包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行,需要注意的是,如果你没有部署好Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,对于使用部署好的Hive,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。
spark-shell默认是Hive支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。
4.1 使用内嵌Hive
如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可。
Hive 的元数据存储在 derby 中, 仓库地址:$SPARK_HOME/spark-warehouse。
1 | scala复制代码scala> spark.sql("show tables").show |
向表中加载本地数据数据
1 | scala复制代码scala> spark.sql("load data local inpath './ids.txt' into table aa") |
在实际使用中, 几乎没有任何人会使用内置的 Hive。
4.2 外部Hive应用
如果Spark要接管Hive外部已经部署好的Hive,需要通过以下几个步骤。
(1)确定原有Hive是正常工作的
(2)需要把hive-site.xml拷贝到spark的conf/目录下
(3)如果以前hive-site.xml文件中,配置过Tez相关信息,注释掉
(4)把Mysql的驱动copy到Spark的jars/目录下
(5)需要提前启动hive服务,hive/bin/hiveservices.sh start
(6)如果访问不到hdfs,则需把core-site.xml和hdfs-site.xml拷贝到conf/目录
启动 spark-shell
1 | scala复制代码scala> spark.sql("show tables").show |
4.3 运行Spark SQL CLI
Spark SQLCLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQ LCLI,直接执行SQL语句,类似Hive窗口。
1 | scala复制代码bin/spark-sql |
4.4 代码中操作Hive
1)添加依赖
1 | xml复制代码<dependency> |
2)拷贝hive-site.xml到resources目录
3)代码实现
1 | scala复制代码object SparkSQL08_Hive{ |
Spark SQL实战
1、数据准备
Spark-sql操作所有的数据均来自Hive,首先在Hive中创建表,并导入数据。一共有3张表:1张用户行为表,1张城市表,1张产品表。
1 | xml复制代码CREATE TABLE `user_visit_action`( |
2、需求
2.1 需求简介
这里的热门商品是从点击量的维度来看的,计算各个区域前三大热门商品,并备注上每个商品在主要城市中的分布比例,超过两个城市用其他显示。
例如:
2.2 思路分析
1)使用sql来完成,碰到复杂的需求,可以使用udf或udaf
2)查询出来所有的点击记录,并与city_info表连接,得到每个城市所在的地区,与Product_info表连接得到产品名称
3)按照地区和商品名称分组,统计出每个商品在每个地区的总点击次数
4)每个地区内按照点击次数降序排列
5)只取前三名,并把结果保存在数据库中
6)城市备注需要自定义UDAF函数
2.3 代码实现
1)UDAF函数定义
1 | scala复制代码class AreaClickUDAF extends UserDefinedAggregateFunction { |
2)具体实现
1 | scala复制代码object SparkSQL04_TopN { |
猜你喜欢
本文转载自: 掘金