「这是我参与11月更文挑战的第5天,活动详情查看:2021最后一次更文挑战」
hi ,大家好,我是三天打鱼,两天晒网的小六六
前言
文本已收录至我的GitHub仓库,欢迎Star:github.com/bin39232820…
种一棵树最好的时间是十年前,其次是现在
最近小六六业余时间都会刷点算法,至于原因当然是小六六太菜了,哈哈,是真的菜,不过刷了一些题后,发现自己的脑子不那么傻了,看来刷力扣还是有助于思维的提升,建议大家业余的时候刷刷,当然算法思维对于我们写的代码的性能也是有帮助的呢?刷力扣的过程中,经常会用到Arrays.sort这个方法,今天小六六就给大家分享分享这个方法,看看Java的JDK是怎么去做排序的
常见的排序算法
要了解Arrays.sort的底层原理,我们先来看看我们耳熟能详的排序算法吧,这边只是大概的提提这些算法,我们一般在开发的过程中,会碰到以下的排序算法
算法一:插入排序
插入排序示意图
插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
算法步骤:
1)将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
2)从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
算法二:选择排序
选择排序示意图
选择排序
(Selection sort)也是一种简单直观的排序算法。
算法步骤:
1)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
2)再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
3)重复第二步,直到所有元素均排序完毕。
算法三:冒泡排序
冒泡排序示意图
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
算法步骤:
1)比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
3)针对所有的元素重复以上的步骤,除了最后一个。
4)持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
算法四:归并排序
归并排序示意图
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法步骤:
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
- 重复步骤3直到某一指针达到序列尾
- 将另一序列剩下的所有元素直接复制到合并序列尾
算法五:快速排序
快速排序示意图
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1 从数列中挑出一个元素,称为 “基准”(pivot),
2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
当然还有其他的几种排序算法,大家也去了解下,但是我们常用的就上面5种了
来看看Arrays.sort和Collections.sort实现原理解析
- 事实上Collections.sort方法底层就是调用的array.sort方法,而且不论是Collections.sort或者是Arrays.sort方法,
- 跟踪下源代码吧,首先我们写个demo
1 | ini复制代码 |
- 点进去看看
上面的英文注释解释:
将指定的数组按升序数字排序。
实现说明:排序算法是由Vladimir Yaroslavskiy, Jon Bentley和Joshua Bloch设计的双枢轴快速排序。该算法在许多数据集上提供了O(n log(n))的性能,这导致其他快速排序的性能下降到二次的性能,而且通常比传统的(单轴)快速排序实现更快。
- 快速排序使用的是分治思想,将原问题分成若干个子问题进行递归解决。选择一个元素作为轴(pivot),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比轴元素小,另外一部分的所有数据都比轴元素大,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
- 双轴快排(DualPivotQuicksort),顾名思义有两个轴元素pivot1,pivot2,且pivot ≤pivot2,将序列分成三段:x < pivot1、pivot1 ≤ x ≤ pivot2、x >pivot2,然后分别对三段进行递归。这个算法通常会比传统的快排效率更高,也因此被作为Arrays.java中给基本类型的数据排序的具体实现。
- 接着看我们重要的sort方法
- 判断数组的长度是否大于286,大于则使用归并排序(merge sort),否则执行下一步
1 | kotlin复制代码// Use Quicksort on small arrays |
- 小过这个阀值的进入Quicksort (快速排序),其实并不全是,点进去sort(a, left, right, true);方法:
1 | scss复制代码// Use insertion sort on tiny arrays |
- 点进去后我们看到第二个阀值INSERTION_SORT_THRESHOLD(47),如果元素少于47这个阀值,就用插入排序,往下看确实如此:
1 | css复制代码/* |
- 这是少于阀值QUICKSORT_THRESHOLD(286)的两种情况,至于大于286的,它会进入归并排序(Merge Sort),但在此之前,它有个小动作:
1 | css复制代码 |
总结
我们来看看Arrays.sort整一个流程图吧
O(nlogn)只代表增长量级,同一个量级前面的常数也可以不一样,不同数量下面的实际运算时间也可以不一样。
数量非常小的情况下(就像上面说到的,少于47的),插入排序等可能会比快速排序更快。 所以数组少于47的会进入插入排序。
快排数据越无序越快(加入随机化后基本不会退化),平均常数最小,不需要额外空间,不稳定排序。
归排速度稳定,常数比快排略大,需要额外空间,稳定排序。
所以大于或等于47或少于286会进入快排,而在大于或等于286后,会有个小动作:“// Check if the array is nearly sorted”。这里第一个作用是先梳理一下数据方便后续的双枢轴归并排序,第二个作用就是即便大于286,但在降序组太多的时候(被判断为没有结构的数据,The array is not highly structured,use Quicksort instead of merge sort.),要转回快速排序。
参考
本文转载自: 掘金