leetcode 1627 Graph Connectiv

「这是我参与11月更文挑战的第28天,活动详情查看:2021最后一次更文挑战

描述

We have n cities labeled from 1 to n. Two different cities with labels x and y are directly connected by a bidirectional road if and only if x and y share a common divisor strictly greater than some threshold. More formally, cities with labels x and y have a road between them if there exists an integer z such that all of the following are true:

  • x % z == 0,
  • y % z == 0, and
  • z > threshold.

Given the two integers, n and threshold, and an array of queries, you must determine for each queries[i] = [ai, bi] if cities ai and bi are connected directly or indirectly. (i.e. there is some path between them).

Return an array answer, where answer.length == queries.length and answer[i] is true if for the ith query, there is a path between ai and bi, or answer[i] is false if there is no path.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
vbnet复制代码Input: n = 6, threshold = 2, queries = [[1,4],[2,5],[3,6]]
Output: [false,false,true]
Explanation: The divisors for each number:
1: 1
2: 1, 2
3: 1, 3
4: 1, 2, 4
5: 1, 5
6: 1, 2, 3, 6
Using the underlined divisors above the threshold, only cities 3 and 6 share a common divisor, so they are the
only ones directly connected. The result of each query:
[1,4] 1 is not connected to 4
[2,5] 2 is not connected to 5
[3,6] 3 is connected to 6 through path 3--6

Example 2:

1
2
3
4
vbnet复制代码Input: n = 6, threshold = 0, queries = [[4,5],[3,4],[3,2],[2,6],[1,3]]
Output: [true,true,true,true,true]
Explanation: The divisors for each number are the same as the previous example. However, since the threshold is 0,
all divisors can be used. Since all numbers share 1 as a divisor, all cities are connected.

Example 3:

1
2
3
4
vbnet复制代码Input: n = 5, threshold = 1, queries = [[4,5],[4,5],[3,2],[2,3],[3,4]]
Output: [false,false,false,false,false]
Explanation: Only cities 2 and 4 share a common divisor 2 which is strictly greater than the threshold 1, so they are the only ones directly connected.
Please notice that there can be multiple queries for the same pair of nodes [x, y], and that the query [x, y] is equivalent to the query [y, x].

Note:

  • 2 <= n <= 10^4
  • 0 <= threshold <= n
  • 1 <= queries.length <= 10^5
  • queries[i].length == 2
  • 1 <= ai, bi <= cities
  • ai != bi

解析

根据题意,给定 n 个城市,从 1 到 n 标记。 当且仅当 x 和 y 共享一个严格大于某个 threshold 的公约数时,标签为 x 和 y 的两个不同城市通过一条双向道路直接相连。 如果存在一个整数 z 使得以下所有条件都为真,则标签为 x 和 y 的城市之间有一条道路:

  • x % z == 0
  • y % z == 0
  • z > threshold

给定两个整数 n 和 threshold ,以及一个数组 queries ,针对每个 queries[i] = [ai, bi] ,确认城市 ai 和 bi 是否相连接,不管直接还是间接。 返回一个数组 answer ,其中 answer.length == queries.length 并且 answer[i] 如果对于第 i 个查询,如果城市之间存在路径,则 answer[i] 为 true,如果没有路径,则 answer[i] 为 false。

本题其实考察的是快读选择两个城市进行合并,如果用暴力解法,先遍历 x 城市再遍历 y 城市,在判断是否相通,时间复杂度太高了。换一个思路就是遍历大于 threshold 的公约数 t ,然后在小于等于 n 范围内找 t 的倍数,只要是 t 的倍数的城市都可以合并到一块,给这些城市赋予最小的城市 id 作为他们的祖先。最后便利 queries 中的每一对城市,如果他们的祖先相同说明就是相通的,否则说明不相通。

解答

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
python复制代码class Solution(object):
def areConnected(self, n, threshold, queries):
"""
:type n: int
:type threshold: int
:type queries: List[List[int]]
:rtype: List[bool]
"""
father = {i:i for i in range(1, n+1)}
visited = {i:0 for i in range(1, n+1)}
for t in range(threshold+1, n+1):
if visited[t]:continue
for x in range(t, n+1, t):
visited[x] = 1
if self.getFather(x,father) != self.getFather(t,father): self.union(x, t,father)
result = []
for query in queries:
result.append(self.getFather(query[0],father)==self.getFather(query[1],father))
return result

def union(self,a,b,father):
a = father[a]
b = father[b]
if a<b: father[b] = a
else: father[a] = b


def getFather(self,x,father):
if father[x] != x:
father[x] = self.getFather(father[x],father)
return father[x]

运行结果

1
2
erlang复制代码Runtime: 824 ms, faster than 100.00% of Python online submissions for Graph Connectivity With Threshold.
Memory Usage: 51.4 MB, less than 100.00% of Python online submissions for Graph Connectivity With Threshold.

原题链接:leetcode.com/problems/gr…

您的支持是我最大的动力

本文转载自: 掘金

开发者博客 – 和开发相关的 这里全都有

0%