786 第 K 个最小的素数分数 「优先队列(堆)」&「

「这是我参与11月更文挑战的第 29 天,活动详情查看:2021最后一次更文挑战」。

题目描述

这是 LeetCode 上的 786. 第 K 个最小的素数分数 ,难度为 困难

Tag : 「优先队列」、「多路归并」、「二分」、「双指针」

给你一个按递增顺序排序的数组 arr 和一个整数 k

数组 arr 由 111 和若干 素数 组成,且其中所有整数互不相同。

对于每对满足 0<i<j<arr.length0 < i < j < arr.length0<i<j<arr.length 的 iii 和 jjj ,可以得到分数 arr[i]/arr[j]arr[i] / arr[j]arr[i]/arr[j] 。

那么第 kkk 个最小的分数是多少呢? 以长度为 222 的整数数组返回你的答案, 这里 answer[0]==arr[i]answer[0] == arr[i]answer[0]==arr[i] 且 answer[1]==arr[j]answer[1] == arr[j]answer[1]==arr[j] 。

示例 1:

1
2
3
4
5
6
7
ini复制代码输入:arr = [1,2,3,5], k = 3

输出:[2,5]

解释:已构造好的分数,排序后如下所示:
1/5, 1/3, 2/5, 1/2, 3/5, 2/3
很明显第三个最小的分数是 2/5

示例 2:

1
2
3
ini复制代码输入:arr = [1,7], k = 1

输出:[1,7]

提示:

  • 2<=arr.length<=10002 <= arr.length <= 10002<=arr.length<=1000
  • 1<=arr[i]<=3∗1041 <= arr[i] <= 3 * 10^41<=arr[i]<=3∗104
  • arr[0]==1arr[0] == 1arr[0]==1
  • arr[i]arr[i]arr[i] 是一个 素数 ,i>0i > 0i>0
  • arrarrarr 中的所有数字 互不相同 ,且按严格递增排序
  • 1<=k<=arr.length∗(arr.length−1)/21 <= k <= arr.length * (arr.length - 1) / 21<=k<=arr.length∗(arr.length−1)/2

优先队列(堆)

数据范围只有 10310^3103,直接扫描所有点对的计算量不超过 10610^6106。

因此我们可以使用「扫描点对」+「优先队列(堆)」的做法,使用二元组 (arr[i],arr[j])(arr[i], arr[j])(arr[i],arr[j]) 进行存储,构建大小为 kkk 的大根堆。

根据「堆内元素多少」和「当前计算值与堆顶元素的大小关系」决定入堆行为:

  • 若堆内元素不足 kkk 个,直接将当前二元组进行入堆;
  • 若堆内元素已达 kkk 个,根据「当前计算值 arr[i]arr[j]\frac{arr[i]}{arr[j]}arr[j]arr[i]​ 与堆顶元素 peek[0]peek[1]\frac{peek[0]}{peek[1]}peek[1]peek[0]​ 的大小关系」进行分情况讨论:
    • 如果当前计算值比堆顶元素大,那么当前元素不可能是第 kkk 小的值,直接丢弃;
    • 如果当前计算值比堆顶元素小,那么堆顶元素不可能是第 kkk 小的值,使用当前计算值置换掉堆顶元素。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Java复制代码class Solution {
public int[] kthSmallestPrimeFraction(int[] arr, int k) {
int n = arr.length;
PriorityQueue<int[]> q = new PriorityQueue<>((a,b)->Double.compare(b[0]*1.0/b[1],a[0]*1.0/a[1]));
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double t = arr[i] * 1.0 / arr[j];
if (q.size() < k || q.peek()[0] * 1.0 / q.peek()[1] > t) {
if (q.size() == k) q.poll();
q.add(new int[]{arr[i], arr[j]});
}
}
}
return q.poll();
}
}
  • 时间复杂度:扫描所有的点对复杂度为 O(n2)O(n^2)O(n2);将二元组入堆和出堆的复杂度为 O(log⁡k)O(\log{k})O(logk)。整体复杂度为 O(n2∗log⁡k)O(n^2 * \log{k})O(n2∗logk)
  • 空间复杂度:O(k)O(k)O(k)

多路归并

在解法一中,我们没有利用「数组内元素严格单调递增」的特性。

由于题目规定所有的点对 (i,j)(i, j)(i,j) 必须满足 i<ji < ji<j,即给定 arr[j]arr[j]arr[j] 后,其所能构建的分数个数为 jjj 个,而这 jjj 个分数值满足严格单调递增:arr[0]arr[j]<arr[1]arr[j]<arr[2]arr[j]<…<arr[j−1]arr[j]\frac{arr[0]}{arr[j]} < \frac{arr[1]}{arr[j]} < \frac{arr[2]}{arr[j]} < … < \frac{arr[j - 1]}{arr[j]}arr[j]arr[0]​<arr[j]arr[1]​<arr[j]arr[2]​<…<arr[j]arr[j−1]​。

问题等价于我们从 n−1n - 1n−1 个(下标 000 作为分母的话,不存在任何分数)有序序列中找到第 kkk 小的数值。这 n−1n - 1n−1 个序列分别为:

  • [arr[0]arr[1]][\frac{arr[0]}{arr[1]}][arr[1]arr[0]​]
  • [arr[0]arr[2],arr[1]arr[2]][\frac{arr[0]}{arr[2]}, \frac{arr[1]}{arr[2]}][arr[2]arr[0]​,arr[2]arr[1]​]
  • [arr[0]arr[3],arr[1]arr[3],arr[2]arr[3]][\frac{arr[0]}{arr[3]}, \frac{arr[1]}{arr[3]}, \frac{arr[2]}{arr[3]}][arr[3]arr[0]​,arr[3]arr[1]​,arr[3]arr[2]​]
  • [arr[0]arr[j],arr[1]arr[j],arr[2]arr[j],…,arr[j−1]arr[j]][\frac{arr[0]}{arr[j]}, \frac{arr[1]}{arr[j]}, \frac{arr[2]}{arr[j]}, … , \frac{arr[j - 1]}{arr[j]}][arr[j]arr[0]​,arr[j]arr[1]​,arr[j]arr[2]​,…,arr[j]arr[j−1]​]

问题彻底切换为「多路归并」问题,我们使用「优先队列(堆)」来维护多个有序序列的当前头部的最小值即可。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Java复制代码class Solution {
public int[] kthSmallestPrimeFraction(int[] arr, int k) {
int n = arr.length;
PriorityQueue<int[]> q = new PriorityQueue<>((a,b)->{
double i1 = arr[a[0]] * 1.0 / arr[a[1]], i2 = arr[b[0]] * 1.0 / arr[b[1]];
return Double.compare(i1, i2);
});
for (int i = 1; i < n; i++) q.add(new int[]{0, i});
while (k-- > 1) {
int[] poll = q.poll();
int i = poll[0], j = poll[1];
if (i + 1 < j) q.add(new int[]{i + 1, j});
}
int[] poll = q.poll();
return new int[]{arr[poll[0]], arr[poll[1]]};
}
}
  • 时间复杂度:起始将 n−1n - 1n−1 个序列的头部元素放入堆中,复杂度为 O(nlog⁡n)O(n\log{n})O(nlogn);然后重复 kkk 次操作得到第 kkk 小的值,复杂度为 O(klog⁡n)O(k\log{n})O(klogn)。整体复杂度为 O(max⁡(n,k)∗log⁡n)O(\max(n, k) * \log{n})O(max(n,k)∗logn)
  • 空间复杂度:O(n)O(n)O(n)

二分 + 双指针

进一步,利用 arrarrarr 递增,且每个点对 (i,j)(i, j)(i,j) 满足 i<ji < ji<j,我们可以确定 (i,j)(i, j)(i,j) 对应的分数 arr[i]arr[j]\frac{arr[i]}{arr[j]}arr[j]arr[i]​ 必然落在 [0,1][0, 1][0,1] 范围内。

假设最终答案 arr[i]arr[j]\frac{arr[i]}{arr[j]}arr[j]arr[i]​ 为 xxx,那么以 xxx 为分割点的数轴(该数轴上的点为 arrarrarr 所能构造的分数值)上具有「二段性」:

  • 小于等于 xxx 的值满足:其左边分数值个数小于 kkk 个;
  • 大于 xxx 的值不满足:其左边分数值个数小于 kkk 个(即至少有 kkk 个)。

而当确定 arr[j]arr[j]arr[j] 时,利用 arrarrarr 有序,我们可以通过「双指针」快速得知,满足 arr[i]arr[j]<=x\frac{arr[i]}{arr[j]} <= xarr[j]arr[i]​<=x 的分子位置在哪(找到最近一个满足 arr[i]arr[j]>x\frac{arr[i]}{arr[j]} > xarr[j]arr[i]​>x 的位置)。

另外,我们可以在每次 check 的同时,记录下相应的 arr[i]arr[i]arr[i] 和 arr[j]arr[j]arr[j]。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Java复制代码class Solution {
double eps = 1e-8;
int[] arr;
int n, a, b;
public int[] kthSmallestPrimeFraction(int[] _arr, int k) {
arr = _arr;
n = arr.length;
double l = 0, r = 1;
while (r - l > eps) {
double mid = (l + r) / 2;
if (check(mid) >= k) r = mid;
else l = mid;
}
return new int[]{a, b};
}
int check(double x){
int ans = 0;
for (int i = 0, j = 1; j < n; j++) {
while (arr[i + 1] * 1.0 / arr[j] <= x) i++;
if (arr[i] * 1.0 / arr[j] <= x) ans += i + 1;
if (Math.abs(arr[i] * 1.0 / arr[j] - x) < eps) {
a = arr[i]; b = arr[j];
}
}
return ans;
}
}
  • 时间复杂度:二分次数取决于精度,精度为 C=108C = 10^8C=108,二分复杂度为 O(log⁡C);O(\log{C});O(logC);check 的复杂度为 O(n)O(n)O(n)。整体复杂度为 O(n∗log⁡C)O(n * \log{C})O(n∗logC)
  • 空间复杂度:O(1)O(1)O(1)

最后

这是我们「刷穿 LeetCode」系列文章的第 No.786 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

本文转载自: 掘金

开发者博客 – 和开发相关的 这里全都有

0%