⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 [BaguTree Pro] 知识星球提问。
学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在实际的业务开发中,往往不需要我们手写数据结构,而是直接使用标准库的数据结构 / 容器类。
本文是 Java & Android 集合框架系列的第 2 篇文章,完整文章目录请移步到文章末尾~
前言
大家好,我是小彭。
在上一篇文章里,我们聊到了基于动态数组 ArrayList 线性表,今天我们来讨论一个基于链表的线性表 —— LinkedList。
思维导图:
- LinkedList 的特点
1.1 说一下 ArrayList 和 LinkedList 的区别?
- 1、数据结构: 在数据结构上,ArrayList 和 LinkedList 都是 “线性表”,都继承于 Java 的
List
接口。另外 LinkedList 还实现了 Java 的Deque
接口,是基于链表的栈或队列,与之对应的是ArrayDeque
基于数组的栈或队列; - 2、线程安全: ArrayList 和 LinkedList 都不考虑线程同步,不保证线程安全;
- 3、底层实现: 在底层实现上,ArrayList 是基于动态数组的,而 LinkedList 是基于双向链表的。事实上,它们很多特性的区别都是因为底层实现不同引起的。比如说:
- 在遍历速度上: 数组是一块连续内存空间,基于局部性原理能够更好地命中 CPU 缓存行,而链表是离散的内存空间对缓存行不友好;
- 在访问速度上: 数组是一块连续内存空间,支持 O(1) 时间复杂度随机访问,而链表需要 O(n) 时间复杂度查找元素;
- 在添加和删除操作上: 如果是在数组的末尾操作只需要 O(1) 时间复杂度,但在数组中间操作需要搬运元素,所以需要 O(n)时间复杂度,而链表的删除操作本身只是修改引用指向,只需要 O(1) 时间复杂度(如果考虑查询被删除节点的时间,复杂度分析上依然是 O(n),在工程分析上还是比数组快);
- 额外内存消耗上: ArrayList 在数组的尾部增加了闲置位置,而 LinkedList 在节点上增加了前驱和后继指针。
1.2 LinkedList 的多面人生
在数据结构上,LinkedList 不仅实现了与 ArrayList 相同的 List 接口,还实现了 Deque 接口(继承于 Queue 接口)。
Deque 接口表示一个双端队列(Double Ended Queue),允许在队列的首尾两端操作,所以既能实现队列行为,也能实现栈行为。
Queue 接口:
拒绝策略 | 抛异常 | 返回特殊值 |
---|---|---|
入队(队尾) | add(e) | offer(e) |
出队(队头) | remove() | poll() |
观察(队头) | element() | peek() |
Queue 的 API 可以分为 2 类,区别在于方法的拒绝策略上:
- 抛异常:
+ 向空队列取数据,会抛出 NoSuchElementException 异常;
+ 向容量满的队列加数据,会抛出 IllegalStateException 异常。
- 返回特殊值:
+ 向空队列取数据,会返回 null;
+ 向容量满的队列加数据,会返回 false。
Deque 接口:
Java 没有提供标准的栈接口(很好奇为什么不提供),而是放在 Deque 接口中:
拒绝策略 | 抛异常 | 等价于 |
---|---|---|
入栈 | push(e) | addFirst(e) |
出栈 | pop() | removeFirst() |
观察(栈顶) | peek() | peekFirst() |
除了标准的队列和栈行为,Deque 接口还提供了 12 个在两端操作的方法:
拒绝策略 | 抛异常 | 返回值 |
---|---|---|
增加 | addFirst(e)/ addLast(e) | offerFirst(e)/ offerLast(e) |
删除 | removeFirst()/ removeLast() | pollFirst()/ pollLast() |
观察 | getFirst()/ getLast() | peekFirst()/ peekLast() |
- LinkedList 源码分析
这一节,我们来分析 LinkedList 中主要流程的源码。
2.1 LinkedList 的属性
- LinkedList 底层是一个 Node 双向链表,Node 节点中会持有数据 E 以及 prev 与next 两个指针;
- LinkedList 用
first
和last
指针指向链表的头尾指针。
LinkedList 的属性很好理解的,不出意外的话又有小朋友出来举手提问了:
- 🙋🏻♀️ 疑问 1:为什么字段都不声明
private
关键字?
这个问题直接回答吧。我的理解是:因为内部类在编译后会生成独立的 Class 文件,如果外部类的字段是 private 类型,那么编译器就需要通过方法调用,而 non-private 字段就可以直接访问字段。
- 🙋🏻♀️ 疑问 2:为什么字段都声明
transient
关键字?
这个问题我们在分析源码的过程中回答。
疑问比 ArrayList 少很多,LinkedList 真香(还是别高兴得太早吧)。
1 | java复制代码public class LinkedList<E> |
2.2 LinkedList 的构造方法
LinkedList 有 2 个构造方法:
- 1、无参构造方法: no-op;
- 2、带集合的构造: 在链表末尾添加整个集合,内部调用了 addAll 方法将整个集合添加到数组的末尾。
1 | java复制代码// 无参构造方法 |
2.3 LinkedList 的添加方法
LinkedList 提供了非常多的 addXXX
方法,内部都是调用一系列 linkFirst
、linkLast
或 linkBefore
完成的。如果在链表中间添加节点时,会用到 node(index) 方法查询指定位置的节点。
其实,我们会发现所有添加的逻辑都可以用 6 个步骤概括:
- 步骤 1: 找到插入位置的后继节点(在头部插入就是 first,在尾部插入就是 null);
- 步骤 2: 构造新节点;
- 步骤 3: 将新节点的 prev 指针指向前驱节点(在头部插入就是 null,在尾部插入就是 last);
- 步骤 4: 将新节点的 next 指针指向后继节点(在头部插入就是 first,在尾部插入就是 null);
- 步骤 5: 将前驱节点的 next 指针指向新节点(在头部插入没有这个步骤);
- 步骤 6: 将后继节点的 prev 指针指向新节点(在尾部插入没有这个步骤)。
分析一下添加方法的时间复杂度,区分在链表两端或中间添加元素的情况共:
- 如果是在链表首尾两端添加: 只需要 O(1) 时间复杂度;
- 如果在链表中间添加: 由于需要定位到添加位置的前驱和后继节点,所以需要 O(n) 时间复杂度。如果事先已经获得了添加位置的节点,就只需要 O(1) 时间复杂度。
添加方法
1 | java复制代码public void addFirst(E e) { |
在链表中间添加节点时,会用到 node(index) 方法查询指定位置的节点。可以看到维持 first 和 last 头尾节点的作用又发挥出来了:
- 如果索引位置小于 size/2,则从头节点开始找;
- 如果索引位置大于 size/2,则从尾节点开始找。
虽然,我们从复杂度分析的角度看,从哪个方向查询是没有区别的,时间复杂度都是 O(n)。但从工程分析的角度看还是有区别的,从更靠近目标节点的位置开始查询,实际执行的时间会更短。
查询指定位置节点
1 | java复制代码// 寻找指定位置的节点,时间复杂度:O(n) |
LinkedList 的删除方法其实就是添加方法的逆运算,我们就不重复分析了。
1 | java复制代码// 删除头部元素 |
2.4 LinkedList 的迭代器
Java 的 foreach 是语法糖,本质上也是采用 iterator 的方式。由于 LinkedList 本身就是双向的,所以 LinkedList 只提供了 1 个迭代器:
- ListIterator listIterator(): 双向迭代器
与其他容器类一样,LinkedList 的迭代器中都有 fail-fast 机制。如果在迭代的过程中发现 expectedModCount 变化,说明数据被修改,此时就会提前抛出 ConcurrentModificationException
异常(当然也不一定是被其他线程修改)。
1 | java复制代码public ListIterator<E> listIterator(int index) { |
2.5 LinkedList 的序列化过程
- 🙋🏻♀️ 疑问 2:为什么字段都声明
transient
关键字?
LinkedList 重写了 JDK 序列化的逻辑,不序列化链表节点,而只是序列化链表节点中的有效数据,这样序列化产物的大小就有所降低。在反序列时,只需要按照对象顺序依次添加到链表的末尾,就能恢复链表的顺序。
1 | java复制代码// 序列化和反序列化只考虑有效数据 |
2.6 LinkedList 的 clone() 过程
LinkedList 中的 first 和 last 指针是引用类型,因此在 clone() 中需要实现深拷贝。否则,克隆后两个 LinkedList 对象会相互影响:
1 | php复制代码private LinkedList<E> superClone() { |
2.7 LinkedList 如何实现线程安全?
有 5 种方式:
- 方法 1 - 使用 Collections.synchronizedList 包装类: 原理也是在所有方法上增加 synchronized 关键字;
- 方法 2 - 使用 ConcurrentLinkedQueue 容器类: 基于 CAS 无锁实现的线程安全队列;
- 方法 3 - 使用 LinkedBlockingQueue 容器: 基于加锁的阻塞队列,适合于带阻塞操作的生产者消费者模型;
- 方法 4 - 使用 LinkedBlockingDeque 容器: 基于加锁的阻塞双端队列,适合于带阻塞操作的生产者消费者模型;
- 方法 5 - 使用 ConcurrentLinkedDeque 容器类: 基于 CAS 无锁实现的线程安全双端队列。
- 总结
- 1、LinkedList 是基于链表的线性表,同时具备 List、Queue 和 Stack 的行为;
- 2、在查询指定位置的节点时,如果索引位置小于 size/2,则从头节点开始找,否则从尾节点开始找;
- 3、LinkedList 重写了序列化过程,只处理链表节点中有效的元素;
- 4、LinkedList 和 ArrayList 都不考虑线程同步,不保证线程安全。
在上一篇文章里,我们提到了 List 的数组实现 ArrayList,而 LinkedList 不仅是 List 的链表实现,同时还是 Queue 和 Stack 的链表实现。那么,在 Java 中的 Queue 和 Stack 的数组实现是什么呢,这个我们在下篇文章讨论,请关注。
版权声明
本文为稀土掘金技术社区首发签约文章,14天内禁止转载,14天后未获授权禁止转载,侵权必究!
推荐阅读
Java & Android 集合框架系列文章目录(2023/07/08 更新):
- #1 ArrayList 可以完全替代数组吗?
- #2 说一下 ArrayList 和 LinkedList 的区别?
- #3 CopyOnWriteArrayList 是如何保证线程安全的?
- #4 ArrayDeque:如何用数组实现栈和队列?
- #5 万字 HashMap 详解,基础(优雅)永不过时 —— 原理篇
- #6 万字 HashMap 详解,基础(优雅)永不过时 —— 源码篇
- #7 如何使用 LinkedHashMap 实现 LRU 缓存?
- #8 说一下 WeakHashMap 如何清理无效数据的?
- #9 全网最全的 ThreadLocal 原理详细解析 —— 原理篇
- #10 全网最全的 ThreadLocal 原理详细解析 —— 源码篇
数据结构与算法系列文章:跳转阅读
⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~
本文转载自: 掘金